Learning objectives 9/19

- I can explain why the periodic table is laid out how it is
- I can determine the characteristics of an element (charge, bonding, reactivity) based on location on the periodic table
- I can compare and contrast ionic and covalent bonding

Lanthanides Actinides

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тъ	Dy	Но	Er	Tm	Yb	Lu
Th	Pa	U	Nр	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Periods and Groups

All of the elements in a period have the same number of Electron Energy Levels.

The elements in a group have the same number of electrons in their outer Electron Energy Level.

Which groups of the periodic table are the most reactive?

- A) Group 1
- B) Group 1 and Group 7
- C) Group 8
- D) Groups 3-12

What types of properties of the elements determined the periodic table GROUPS?

- A) Reactivity
- B) Relative atomic Mass
- C) Number of electrons in outer shell
- D)Both A and C

The octet rule is a chemical rule of thumb that reflects observation that atoms of main-group elements tend to combine in such a way that each atom has eight electrons in its valence shell, giving it the same electron configuration as a noble gas.

The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens, but also to metals such as sodium or magnesium.

Vocab to know!

- Valence Electron
- Group
- Period
- Octet Rule
- Main Group Element

Ionic Bonding

Ionic bonding is the GIVING of electrons.

Each atom either gives or receives an electron and as a result has a charge and is an ion.

Because the charges are opposite the atoms are attracted to each other resulting in the ionic bond

Covalent Bonding

Covalent bonding is the SHARING of electrons.

Each atom does not have a full octet. Atoms will each share one electrons with the other atom resulting in a pair of electrons that are a part of both atoms.

The shared electrons are a covalent bond.

Lewis Dot structures

Show how bonding and reactions can occur

Dots represent valence electrons

Oxygen has 6 valence electrons

Lewis Dot structures

Molecular Models

= Hydrogen

- Draw a Lewis dot structure for oxygen, carbon, and hydrogen
- 2. Look closely at the oxygen carbon and hydrogen atoms you have

What do the holes in the atoms represent?

What do the grey connectors represent?

